Repository of Research and Investigative Information

Repository of Research and Investigative Information

Ilam University of Medical Sciences

Performance Analysis of Selected Decision Tree Algorithms for Predicting Drug Adverse Reaction among COVID-19 Hospitalized Patients

Thu Nov 21 23:32:20 2024

(2022) Performance Analysis of Selected Decision Tree Algorithms for Predicting Drug Adverse Reaction among COVID-19 Hospitalized Patients. Journal of Medicinal and Chemical Sciences. pp. 505-517. ISSN 26514702 (ISSN)

Full text not available from this repository.

Official URL: https://www.scopus.com/inward/record.uri?eid=2-s2....

Abstract

Increase in drug allergies and unpleasant adverse effects caused by COVID-19 medication therapies has doubled the need for computing technologies and intelligent systems for predicting poor medication outcomes. This study aimed to construct machine learning (ML) based prediction models to better predict adverse drug effects among COVID-19 hospitalized patients. In this retrospective and single-center study, 482 hospitalized COVID-19 patients were used for analysis. First, the Chi-square test was employed to determine the most critical factors predicting adverse drug effects at P<0.05. Second, the four selected decision tree (DT) algorithms were applied to implement the model. Finally, the best DT model was acquired for predicting adverse drug effects using various performance criteria. This study showed that the 18 variables gained the Chi-square at P<0.05 as the most important factors predicting adverse drug reactions. Besides, comparing the performance of selected algorithms demonstrated that generally, the J-48 algorithm with F-Score=94.6 and AUC=0.957 was the best classifier predicting adverse drug reactions among hospitalized COVID-19 patients. Finally, it found that the J-48 algorithm enables a reasonable level of accuracy in predicting the risk of harmful drug effects among COVID-19 hospitalized patients. It potentially facilitates identifying high-risk patients and informing proper interventions by the clinicians. © 2022 by SPC (Sami Publishing Company)

Item Type: Article
Creators:
CreatorsEmail
Nopour, R.UNSPECIFIED
Mashoufi, M.UNSPECIFIED
Amraei, M.UNSPECIFIED
Mehrabi, N.UNSPECIFIED
Mohammadnia, A.UNSPECIFIED
Mahdavi, A.UNSPECIFIED
Mirani, N.UNSPECIFIED
Saki, M.UNSPECIFIED
Shanbehzadeh, M.UNSPECIFIED
Keywords: Adverse effects Artificial intelligence Coronavirus COVID-19 Drug therapy Machine learning
Divisions:
Page Range: pp. 505-517
Journal or Publication Title: Journal of Medicinal and Chemical Sciences
Journal Index: Scopus
Volume: 5
Number: 4
Identification Number: https://doi.org/10.26655/JMCHEMSCI.2022.4.7
ISSN: 26514702 (ISSN)
Depositing User: مهندس مهدی شریفی
URI: http://eprints.medilam.ac.ir/id/eprint/4117

Actions (login required)

View Item View Item