Repository of Research and Investigative Information

Repository of Research and Investigative Information

Ilam University of Medical Sciences

Anti-human lung adenocarcinoma, cytotoxicity, and antioxidant potentials of copper nanoparticles green-synthesized by Calendula officinalis

Sun Nov 24 13:53:29 2024

(2022) Anti-human lung adenocarcinoma, cytotoxicity, and antioxidant potentials of copper nanoparticles green-synthesized by Calendula officinalis. Journal of Experimental Nanoscience. pp. 285-296. ISSN 1745-8080

Full text not available from this repository.

Official URL: http://apps.webofknowledge.com/InboundService.do?F...

Abstract

Calendula officinalis is known as a popular plant with various uses as pharmaceutical agent or food additive around the world. In this study, cooper nanoparticles were green synthesized using the aqueous extract of Calendula officinalis as the stabilizing, reducing, and capping agents. The formation of CuNPs@C. officinalis was screened using different chemical technique such as FT-IR spectroscopy, XRD, SEM, and Energy EDS. The antioxidant and anti-cancer activity of CuNPs@C. officinalis was studied using common assay including free radical scavenging and MTT assays. The results confirm the green synthesized of CuNPs@C. officinalis with aspherical morphology in the range size of 19.64 to 39.15 nm. In the antioxidant test, the IC50 of CuNPs@C. officinalis and BHT against DPPH free radicals were 193 and 154 mu g/mL, respectively. In the cellular and molecular part of the recent study, the treated cells with CuNPs@C. officinalis were assessed by MTT assay for 24, 48, and 72 h about the cytotoxicity and anti-human lung adenocarcinoma properties on normal (HUVEC) and lung adenocarcinoma cell lines, i.e. lung moderately differentiated adenocarcinoma (LC-2/ad), lung poorly differentiated adenocarcinoma (PC-14), and lung well-differentiated bronchogenic adenocarcinoma (HLC-1). The IC50s of CuNPs@C. officinalis were 297, 328, and 514 mu g/mL against PC-14, LC-2/ad, and HLC-1 cell lines, respectively. The viability of malignant lung cell line reduced dose-dependently in the presence of CuNPs@C. officinalis. It seems that the anti-human lung adenocarcinoma effect of recent nanoparticles is due to their antioxidant effects.

Item Type: Article
Creators:
CreatorsEmail
Gu, J. F.UNSPECIFIED
Aidy, A.UNSPECIFIED
Goorani, S.UNSPECIFIED
Keywords: Cu nanoparticles chemical characterization human lung adenocarcinoma antioxidant activity lymph-node metastases silver nanoparticles antibacterial activity gold nanoparticles drug-delivery fruit extract leaf extract in-vivo adsorption reduction Chemistry Science & Technology - Other Topics Materials Science Physics
Divisions:
Page Range: pp. 285-296
Journal or Publication Title: Journal of Experimental Nanoscience
Journal Index: ISI
Volume: 17
Number: 1
Identification Number: https://doi.org/10.1080/17458080.2022.2066082
ISSN: 1745-8080
Depositing User: مهندس مهدی شریفی
URI: http://eprints.medilam.ac.ir/id/eprint/3954

Actions (login required)

View Item View Item