Repository of Research and Investigative Information

Repository of Research and Investigative Information

Ilam University of Medical Sciences

Molecular evaluation of aminoglycosides resistance and biofilm formation in Klebsiella pneumoniae clinical isolates: A cross-sectional study

Sun Apr 21 00:10:14 2024

(2023) Molecular evaluation of aminoglycosides resistance and biofilm formation in Klebsiella pneumoniae clinical isolates: A cross-sectional study. Health Science Reports. p. 12.

Full text not available from this repository.

Official URL: http://apps.webofknowledge.com/InboundService.do?F...

Abstract

Background and AimsResistance to antibiotics and the capability to develop biofilm as two main virulent determinants of Klebsiella pneumoniae have important role in infection persistence. The aim of the study was to evaluate the association between the prevalence of aminoglycoside resistance and virulence genes and biofilm formation capacity in K. pneumoniae strains isolated from hospitalized patients in South-West of Iran. MethodsA total of 114 non-duplicate clinical isolates of K. pneumoniae collected from Ahvaz teaching hospitals. Identification of species was performed by biochemical tests and then confirmed by polymerase chain reaction (PCR) of rpoB gene. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Biofilm formation was assessed by microtiter plate method. Finally, PCR was conducted to detect virulence gene determinants including fimbrial genes, aminoglycoside modifying enzymes- and 16S rRNA methylase (RMTase) genes. ResultsTotally, all collected strains were carbapenem resistant and showed multidrug- and extensively drug-resistance phenotype (75 and 25, respectively). Seventy-one percent (n = 81) of isolates were non-susceptible to aminoglycosides. Among aminoglycoside antibiotics, K. pneumoniae isolates showed the highest and lowest resistance rates to tobramycin (71) and the amikacin (25), respectively. All biofilm producer strains were positive for the presence virulence determinants including ecpA, fimA, mrkD, and mrkA. Of 81 aminoglycosides non-susceptible isolates 33 were positive for the presence ant (2 '')-Ia as the most prevalent gene followed by aac (3 ')-IIa and armA (27), aac (6 ')-Ib (18), and aph (3 ')-Ia (15). ConclusionK. pneumoniae isolates showed the highest and the lowest aminoglycoside resistance rates to tobramycin and amikacin, respectively. Majority of isolates were biofilm producers and there was significant association between antibiotic resistance pattern and the strength of biofilm production. The ant(2 '')-Ia, aac (3 ')-IIa, and armA genes in aminoglycoside-resistant isolates.

Item Type: Article
Creators:
CreatorsEmail
Khoshnood, S.UNSPECIFIED
Akrami, S.UNSPECIFIED
Saki, M.UNSPECIFIED
Motahar, M.UNSPECIFIED
Masihzadeh, S.UNSPECIFIED
Daneshfar, S.UNSPECIFIED
Meghdadi, H.UNSPECIFIED
Montazeri, E. A.UNSPECIFIED
Abdi, M.UNSPECIFIED
Farshadzadeh, Z.UNSPECIFIED
Keywords: aminoglycoside modifying enzymes aminoglycoside resistance biofilm Klebsiella pneumoniae 16S rRNA methylases antimicrobial resistance antibiotic-resistance enterobacteriaceae susceptibility association mechanisms Public, Environmental & Occupational Health General & Internal Medicine
Divisions:
Page Range: p. 12
Journal or Publication Title: Health Science Reports
Journal Index: ISI
Volume: 6
Number: 5
Identification Number: https://doi.org/10.1002/hsr2.1266
Depositing User: مهندس مهدی شریفی
URI: http://eprints.medilam.ac.ir/id/eprint/4424

Actions (login required)

View Item View Item