Repository of Research and Investigative Information

Repository of Research and Investigative Information

Ilam University of Medical Sciences

Combined treatment of high-intensity interval training with neural stem cell generation on contusive model of spinal cord injury in rats

Wed Feb 21 01:19:39 2024

(2023) Combined treatment of high-intensity interval training with neural stem cell generation on contusive model of spinal cord injury in rats. Brain and Behavior. p. 13. ISSN 2162-3279

Full text not available from this repository.

Official URL: http://apps.webofknowledge.com/InboundService.do?F...

Abstract

IntroductionSpinal cord injury (SCI) leads to inflammation, axonal degeneration, and gliosis. A combined treatment of exercise and neural stem cells (NSC) has been proposed to improve neural repair. This study evaluated a combined treatment of high-intensity interval training (HIIT) with NSC generation from adipose-derived stem cells (ADSCs) on a contusive model of SCI in rats. Materials and MethodsIn vitro, rat ADSCs were isolated from the perinephric regions of Sprague-Dawley rats using enzymatic digestion. The ADSCs were transdifferentiated into neurospheres using B27, EGF, and bFGF. After production of NSC, they were labeled using green fluorescent protein (GFP). For the in vivo study, rats were divided into eight groups: control group, sham operation group, sham operation + HIIT group, sham operation + NSC group, SCI group, SCI + HIIT group, SCI + NSC group, and SCI/HIIT/NSC group. Laminectomy was carried out at the T12 level using the impactor system. HIIT was performed three times per week. To assess behavioral function, the Basso-Beattie-Bresnahan (BBB) locomotor test and H-reflex was carried out once a week for 12 weeks. We examined glial fibrillary acidic protein (GFAP), S100 beta, and NF200 expression. ResultsNSC transplantation, HIIT and combined therapy with NSC transplantation, and the HIIT protocol improved locomotor function with decreased maximum H to maximum M reflexes (H/M ratio) and increased the Basso-Beattie-Bresnahan score. ConclusionCombined therapy in contused rats using the HIIT protocol and neurosphere-derived NSC transplantation improves functional and histological outcomes.

Item Type: Article
Creators:
CreatorsEmail
Keikhaei, R.UNSPECIFIED
Abdi, E.UNSPECIFIED
Darvishi, M.UNSPECIFIED
Ghotbeddin, Z.UNSPECIFIED
Hamidabadi, H. G.UNSPECIFIED
Keywords: High-intensity interval training (HIIT) neural stem cells (NSCS) neurospheres transduced schwann-cells functional recovery neurotrophic factor lineage cells exercise bdnf increases growth transplantation proliferation Behavioral Sciences Neurosciences & Neurology
Divisions:
Page Range: p. 13
Journal or Publication Title: Brain and Behavior
Journal Index: ISI
Volume: 13
Number: 7
Identification Number: https://doi.org/10.1002/brb3.3043
ISSN: 2162-3279
Depositing User: مهندس مهدی شریفی
URI: http://eprints.medilam.ac.ir/id/eprint/4403

Actions (login required)

View Item View Item