Repository of Research and Investigative Information

Repository of Research and Investigative Information

Ilam University of Medical Sciences

Application of titanium nanoparticles containing natural compounds in cutaneous wound healing

Fri Jul 1 21:12:38 2022

(2020) Application of titanium nanoparticles containing natural compounds in cutaneous wound healing. Applied Organometallic Chemistry. p. 13. ISSN 0268-2605

Full text not available from this repository.

Official URL: http://apps.webofknowledge.com/InboundService.do?F...

Abstract

The aim of the study was the rapid green synthesis of titanium nanoparticles using the aqueous extract of Falcaria vulgaris leaves (TiNPs@FV) and exploring their antioxidant, cytotoxicity, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. These nanoparticles were characterized by UV-Vis, Fourier transform-infrared(FT-IR), X-ray diffraction XRD), field emission-scanning electron microscopy FE-SEM), and transmission electron microscopy TEM) analyses. The synthesized TiNPs@FV had great cell viability on human umbilical vein endothelial cells and indicted this method was nontoxic. DPPH (2,2-diphenyl-1-picrylhydrazyl) test revealed similar antioxidant potentials for F. vulgaris, TiNPs@FV, and butylated hydroxytoluene. All data of antibacterial, antifungal, and cutaneous wound healing tests were analyzed by SPSS 22 software. In the antimicrobial part of this study, TiNPs@FV indicated higher antifungal and antibacterial effects than all standard antibiotics (p <= 0.01). Minimal inhibitory concentration (MIC) and minimal fungicidal concentration of TiNPs@FV against all fungi were at 2-4 mg/mL and 2-8 mg/mL ranges, respectively. But, MIC and minimal bactericidal concentration of TiNPs@FV against all bacteria were at 2-8 mg/mL and 2-16 mg/mL ranges, respectively. In the part of cutaneous wound healing, use of TiNPs@FV ointment significantly (p <= 0.01) raised the wound contracture, vessel, hydroxyl proline, hexuronic acid, hexosamine, fibrocyte, and fibrocytes/fibroblast rate and significantly (p <= 0.01) decreased the wound area, total cells, neutrophil, and lymphocyte compared to other groups in rats. The results of FT-IR, UV-Vis, XRD, TEM, and FE-SEM confirm that the aqueous extract of F. vulgaris leaves can be used to yield titanium nanoparticles with a notable amount of remedial effects.

Item Type: Article
Creators:
CreatorsEmail
Ahmeda, A.UNSPECIFIED
Abbasi, N.UNSPECIFIED
Ghaneialvar, H.UNSPECIFIED
Zangeneh, M. M.UNSPECIFIED
Zangeneh, A.UNSPECIFIED
Keywords: Falcaria vulgaris extract remedial effects titanium nanoparticles silver nanoparticles green synthesis extract antibacterial nanomaterials leaves acid Chemistry
Divisions:
Page Range: p. 13
Journal or Publication Title: Applied Organometallic Chemistry
Journal Index: ISI
Volume: 34
Number: 4
Identification Number: https://doi.org/10.1002/aoc.5480
ISSN: 0268-2605
Depositing User: مهندس مهدی شریفی
URI: http://eprints.medilam.ac.ir/id/eprint/2640

Actions (login required)

View Item View Item